WATER QUALITY REPORT 2024 Magna Water District

8885 West 3500 South, Magna, UT 84044 (801) 250-2118 https://www.magnawaterut.gov

DRINK LOCAL TAP WATER!

Magna Water 2024 ANNUAL WATER QUALITY CONSUMER CONFIDENCE REPORT

Spanish (Espanol)

Este informe contiene informacion muy importante sobre la calidad de su agua beber. Traduscalo o hable con alguien que lo entienda bien.

Dear Magna Water Customer,

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report), as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Emergency Contact Information

Magna Water District continually explores effective ways to notify customers in the event of a boil order or other water-related emergency. Please sign up on our website for email or text alerts: <u>https://www.magnawaterut.gov/</u>

IS MY WATER SAFE?

Your drinking water meets or exceeds all standards set by the Environmental Protection Agency (EPA), the Utah Department of Environmental Quality, and the Division of Drinking Water.

Where does my water come from?

Your water comes from ten wells located in two well fields. Magna Water District owns the land around these wells and restricts any activity that could contaminate them. Additional water is purchased through a perpetual yearly contract with Jordan Valley Water Conservancy District, which provides a redundant supply source in case of emergencies.

Jordan Valley Water Conservancy District provides a portion of the water distributed by Magna Water District. Water quality reports for Jordan Valley Water can be found at: <u>https://jvwcd.org/water/wqrpage.</u>

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

ARE THERE CONTAMINANTS IN MY DRINKING WATER?

All sources of drinking water contain some naturally occurring constituents. At low levels, these substances are generally not harmful in our drinking water. Some naturally occurring minerals may improve the taste of drinking water and have nutritional value at low levels.

To ensure that tap water is safe to drink, EPA prescribes regulations that limit the concentration of certain contaminants in water provided by public water systems. Types of contaminants include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming;
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems;
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- **Radioactive contaminants**, which can be naturally occurring or be the result of oil and gas production and mining activities.

Is my drinking water treated?

Magna Water District operates a state-of-the-art electrodialysis reversal (EDR) facility to reduce or remove total dissolved solids (TDS), naturally occurring arsenic, and perchlorate. Your water is also treated by disinfection. Disinfection involves adding chlorine or another approved disinfectant to eliminate harmful bacteria and microorganisms that may be present in the water. Disinfection is considered one of the major public health advances of the 20th century.

HOW DO I MEASURE HOW SAFE THE WATER IS?

The maximum contaminant level or MCL's for drinking water are set at very stringent levels to protect public health. To understand the possible health effects described for EPA regulated constituents, an individual would need to drink a half-gallon of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Drinking Water Quality Data Tables

To ensure that tap water is safe to drink, EPA prescribes regulations which limit the contaminants in drinking water provided by public water systems. The tables below list all the drinking water contaminants that were detected in your drinking water.

Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA and the State of Utah requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old.

In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions above the table.

DRINKING WATER QUALITY TABLES

Data collected from water delivered in 2024 and earlier. NA - not applicable, NE - not established, ND - not detected, MCL = maximum contaminant level, MCLG = maximum contaminant level goal

Parameter			Detect	ect Range		Sample					
(units)	MCLG	MCL	Average	Low	High	Date	Violation	Notes / Typical Source			
Disinfectants and Disinfection By-Products											
Note: There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.											
Haloacetic Acids (HAA5, μg/L)	NA	60	19.2	13.2	26.6	2024	No	By-product of drinking water chlorination			
TTHMs (Total Trihalomethanes, μg/L)	NA	80	34.2	22.5	48.3 2024 No		No	By-product of drinking water disinfection			
Other Organic Chemic	als										
No other regulated organics were detected. Monitored parameters include pesticides, herbicides, volatile organics, semivolatile organics, and carbamates)											
Primary Inorganic Chemicals											
Arsenic (μg/L)	0	10	5.0	2.8	8.0	2024	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes			
Nitrate as nitrogen (mg/L)	10	10	1.02	NA	NA	2024	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits			
Lead (mg/L)	4	90% of homes <0.015	All samples <0.015	NA	NA	2022	No	Corrosion of household plumbing systems, erosion of naturally occurring deposits.			
Copper (mg/L)	1.3	90% of homes <1.3	All samples <1.3	NA	NA	2022	No	Corrosion of household plumbing systems, erosion of naturally occurring deposits.			
Asbestos (MFL)	7.0	7.0	ND	NA	NA	2023	No	Decay of asbestos cement in water mains, erosion of natural deposits			

DRINKING WATER QUALITY TABLES (continued)

Data collected from water delivered in 2021 and earlier. NA - not applicable, NE - not established, ND - not detected, MCL = maximum contaminant level, MCLG = maximum contaminant level goal

Parameter			Detect	Range		Sample		
(units)	MCLG	MCL	Average	Low	High	Date	Violation	Notes / Typical Source
Microorganisms								
E. coli (RTCR) - in the distribution system	0	0	0	NA	NA	2024	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Total Coliform (RTCR)	0	All repeat samples are negative	0	NA	NA	2024	No	MCL is for monthly compliance. All samples or repeat samples were negative. No violations were issued. Human and animal fecal waste; naturally occurring in the environment.
Radionuclides		·						
Gross Alpha (pCi/L)	NE	15	3.4	NA	NA	2023	No	Erosion of natural deposits
Gross Beta (pCi/L)	0	50	6.6	NA	NA	2023	No	Erosion of natural deposits
Radium 228 (pCi/L)	NE	5	0.37	NA	NA	2023	No	Erosion of natural deposits

DRINKING WATER QUALITY TABLES (continued)

Data collected from water delivered in 2021 and earlier. NA - not applicable, NE - not established, ND - not detected, MCL = maximum contaminant level, MCLG = maximum contaminant level goal

Parameter	MCLG	MCI	Detect	Ran	nge High	Sample	SDWA Violation	Notos / Tunical Sourco		
(units)	IVICLG	IVICL	Average	LOW	півц	Date	VIOIALIOII	Notes / Typical Source		
EDA recommende secondary standards to water systems but does not require systems to comply with the standard										
			systems but	utes in				Corrosion of household plumbing		
Odor (0-5 Scale)	3	NE	ND	NA	NA	2022	No	systems, erosion of naturally occurring deposits.		
Color (Color Units)	15	NE	10	NA	NA	2022	No	Corrosion of household plumbing systems, erosion of naturally occurring deposits.		
pH (pH Units)	6.5-8.5	NE	7.6	7.5	7.7	2024	No	Naturally present in the environment		
Total Dissolved Solids (TDS, mg/L)	500	2000	717	584	792	2024	No	Naturally occurring substances		
Unregulated Constituent	ts									
Hardness as calcium carbonate (mg/L)	60-120	NE	94.7	65.9	119	2024	No	Naturally occurring minerals (scale: <60 soft, 61-120 moderate, 121- 180 hard, >180 very hard)		
Trichlorotrifluoroethane (Freon 113, μg/L)	NE	NE (Note 1)	12.3	5.2	18.4	2024	No	Refrigerant, solvent, and aerosol propellant.		
Perchlorate - finished blend (µg/L)	NE	NE (Note 2)	2.2	1.21	3.92	2024	No	Used in manufacture of solid rocket propellants, munitions, fireworks, etc.		
Lithium (μg/L)	NE	NE	258	17.8J	258	2024	No	Naturally occurring substances		
Various PFAS compounds (μg/L)	NE	NE	ND	ND	ND	2024	No	Fire training sites, industrial facilities, landfills, and wastewater treatment plants		
Note 1: In the absence of a federal drinking water standard for this compound, CA has set public health goal of 4,000 μ g/L. Note 2: In 2019 the EPA proposed setting the MCL and MCLG at either 18 or 90 μ g/L. A final rule is expected by Nov 2025.										

ADDITIONAL INFORMATION

Additional Information for Arsenic

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs for removing arsenic from drinking water.

EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. While Magna Water District could further reduce arsenic levels beyond what is required by the EPA, the cost of additional treatment would place an undue burden on Magna residents.

Additional Information for Lead

Exposure to lead in drinking water can cause serious health effects in all age groups. Infants and children can have decreases in IQ and attention span. Lead exposure can lead to new learning and behavior problems or exacerbate existing learning and behavior problems. The children of women who are exposed to lead before or during pregnancy can have increased risk of these adverse health effects. Adults can have increased risks of heart disease, high blood pressure, kidney, or nervous system problems.

Magna Water District is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <u>http://www.epa.gov/safewater/lead</u>.

ADDITIONAL INFORMATION (continued)

Lead and Copper Rule Compliance Update

In 2022, the U.S. Environmental Protection Agency (EPA) issued revisions to the Lead and Copper Rule (LCR) to help reduce potential sources of lead in drinking water systems nationwide. In response to these updated requirements, known as the Lead and Copper Rule Improvements (LCRI), Magna Water District has been working diligently to meet the federal compliance timeline—and we are proud to report that we are currently ahead of schedule.

Magna Water District has successfully completed the first phase of our service line inventory. Encouragingly, no lead service lines were found in our system, which is excellent news for the health and safety of our community. However, we did identify 70 galvanized service lines that will need to be replaced to comply with the new federal standards.

Our team has already begun the replacement process and is committed to completing the work efficiently and with minimal disruption to our customers. We anticipate that all necessary replacements will be completed by the end of 2025.

We appreciate your continued support and will keep you informed as this important work progresses.

JORDAN VALLEY WATER CONSERVANCY DISTRICT Consumer Confidence Report Data 2024

Report: B The table below lists all of the parameters in the drinking water detected by Jordan Valley Water Conservancy District or its suppliers in the drinking water during the calendar year of this report. The presence of these parameters in the water does not necessarily indicate that the water of this report. For certain parameters, EPA and/or the State requires monitoring at a frequency less than once per year because the concentrations do not change frequently.

PERMARY INORGANICS Antimony Arsenic Assenics Barlum Berllum Cadmium Copper Chromium Cyanide, Free Fluoride Lead Mercury Nickel Nitrate Sodium Sudfate Toballum Toballum Toballum Toballum Toballum Toballum Toballum	ug/L ug/L MFL ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.004 1.1 ND 49.8 ND 0.8 0.1 0.6 0.5 0.002 ND 0.3 1.1	0.70 4.3 ND 110.5 ND 34 2 3.7 1.7 0.6 ND	ND ND ND ND ND ND ND ND ND	6.00 10.0 7.0 2000 4 5.00 NE 100.0 200.0	6.00 0.0 7.0 2000 4 5.00 NE	No No No No No	2024 2024 2021 2024 2024	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder. Erosion of naturally occurring deposits and runoff from orchards. Decay of asbestos cement in water mains; erosion of natural deposits. Erosion of naturally occurring deposits.
Anumoriv Ansenic Assenic Assenic Assenic Barium Berdium Copper Copper Chromium Copper Fluoride Lead Mercury Nickel Nitrate Nitrate Sodium Sodium Sodium Sodium Thalium Thalium Turbicitit (aroundwater sources)	ug/L ug/L MFL ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.004 1.1 ND 49.8 ND 0.8 0.1 0.6 0.5 0.002 ND 0.3 1.1	0.70 4.3 ND 110.5 ND 34 2 3.7 1.7 0.6 ND	ND ND ND ND ND ND ND ND ND	6.00 10.0 7.0 2000 4 5.00 NE 100.0 200.0	6.00 0.0 7.0 2000 4 5.00 NE	No No No No No	2024 2024 2021 2024 2024 2024	Discratge non periorenn reinnenes, mer relatidants, ceranics, electronics, solder. Erosino of naturally occurring deposits and runoff from orchards. Decay of asbestos cement in water mains; erosion of natural deposits. Erosion of naturally occurring deposits. Discharge from metal refinence and each luming factorian.
Asbestos Barium Gadmium Copper Copper Chromium Cyanide, Free Fluoride Lead Mercury: Nitrate Nitrate Sodium Sulfate Thallium TDS Turbifith (aroundwater sources)	MFL uq/L uq/L	ND 49.8 ND 0.8 0.1 0.6 0.002 ND 0.3 1.1	ND 110.5 ND 34 2 3.7 1.7 0.6 ND	ND ND ND ND ND ND ND	7.0 2000 4 5.00 NE 100.0 200.0	7.0 2000 4 5.00 NE	No No No	2021 2024 2024	Decay of asbestos cement in water mains; erosion of natural deposits. Erosion of naturally occurring deposits.
Barlium Bervlium Cadmium Cadmium Cooper Chromium Cyanide, Free Fluoride Lead Mercury Nickel Nitrate Selenium Selenium Sodium Sulfate Thalitum TDS Turbidit/ (aroundwater sources)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	49.8 ND 0.8 0.1 0.6 0.5 0.002 ND 0.3 1.1	110.5 ND 34 2 3.7 1.7 0.6 ND	ND ND ND ND ND ND	4 5.00 NE 100.0 200.0	2000 4 5.00 NE	No No	2024 2024	Erostori or naturally decounting deposits.
Cadmium C Cooper C Chromium C Cyanide, Free F Fluoride D Lead Mickel Nickel Nitrite Selenium Sodium Sulfate Thallium TDS Turbidity (aroundwater sources)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L mg/L ug/L mg/L mg/L mg/L	ND 0.8 0.1 0.6 0.5 0.002 ND 0.3 1.1	ND 34 2 3.7 1.7 0.6 ND	ND ND ND ND	5.00 NE 100.0 200.0	5.00 NE	No		Discharge from metal rememes and coal burning factories.
Codden Chromium Cyanide, Free Fluoride Lead Mercury Nickel Nitrate Selenium Selenium Sodium Sulfate Thallium TDS Turbidity (aroundwater sources)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.8 0.1 0.6 0.5 0.002 ND 0.3 1.1	2 3.7 1.7 0.6 ND	ND ND ND	100.0	INL	No	2024	Corrosion of galvanized pipes; erosion of natural deposits.
Cyanide, Free Fluoride Lead Mercury Nickel Nitrate Selenium Sodium Sulfate Thallium TOB Turbicity (aroundwater sources)	ug/L mg/L ug/L ug/L mg/L ug/L ug/L mg/L mg/L mg/L	0.6 0.5 0.002 ND 0.3 1.1	3.7 1.7 0.6 ND	ND ND	200.0	100.0	No	2024	Discharge from steel and pulp mills; Erosion of natural deposits.
Lead Mercury Nickel Nitrate Nitrate Selenium Sodium Sulfate Thallium TDS Turbidity (groundwater sources)	ug/L ug/L ug/L mg/L ug/L ug/L mg/L mg/L	0.002 ND 0.3 1.1	0.6 ND	ND	4.0	200.0	No	2023	Discharge from steel/metal factories; discharge from plastic and fertilizer factories. Frosion of naturally occurring deposits and discharges from fertilizers. Fluoride added at source.
Mercury Nickel Nickel Nitrate Selenium Sodium Suffate Thallium TDS Turbicity (aroundwater sources)	uq/L ug/L mq/L mq/L ug/L mq/L mq/L	ND 0.3 1.1	ND	ND	NE	NE	No	2024	Erosion of naturally occurring deposits.
Nitrate Nitrate Selenium Sodium Sodium Sultate Thallium TDS Turbidity (aroundwater sources)	ma/L ma/L ug/L ma/L ma/L	1.1	3	ND ND	2.00 NE	2.00 NE	No No	2024 2024	Erosion of naturally occurring deposits and runoff from landfills. Erosion of naturally occurring deposits.
Nitrite Selenium Sodium Sulfate Thallium TDS Turbidity (groundwater sources) Turbidity (groundwater sources)	mg/L ug/L mg/L mg/L		2.9	ND	10.0	10.0	No	2024	Runoff from fertilizer, leaching from septic tanks, and naturally occurring organic material.
Sodium Sulfate Thallium TDS Turbidity (groundwater sources) Unbidity (and constance sources)	mg/L mg/L	ND 0.4	ND 2.4	ND ND	1.0 50.0	1.0 50.0	No No	2024 2024	Runoff from fertilizer, leaching from septic tanks, and naturally occurring organic material. Erosion of naturally occurring deposits.
Thallium TDS Turbidity (groundwater sources)	mg/L	22.1	74.2	8	NE	NE	No	2024	Erosion of naturally occurring deposits and runoff from road deicing.
TDS Turbidity (groundwater sources)	ug/L	64.6 ND	239 ND	13.5 ND	2.0	0.5	No	2024 2024	Leaching from ore-processing sites and discharges from electronics, glass and drug factories.
Turbidity (groundwater sources)	mg/L	292	652	28	2000	NE	No	2024	Erosion of naturally occurring deposits.
Turbidity (surface water sources)	NTU	0.03	0.4	ND	0.3	TT	No	2023	MCL is 0.3 NTU 95% of the time for surface water. Suspended material from soil runoff.
Lowest Monthly % Meeting TT SECONDARY INORGANICS - Aesthetic Sta	% tandards	100% (Tre	eatment Tecl	hnique requ	irement applie	s only to tre	eated surfa	ce water sources	3)
Aluminum	ug/L	3.1	35.7	ND	SS = 50-200	NE	No	2024	Erosion of naturally occurring deposits and treatment residuals.
Chloride Color	mg/L CU	47	161 10	14 0.1	SS = 250 SS = 15	NE NE	No No	2024 2022	Erosion of naturally occurring deposits. Decaying naturally occurring organic material and suspended particles.
Iron	ug/L	6.7	90	ND	SS = 300	NE	No	2024	Erosion of naturally occurring deposits.
Odor	TON	1.8 ND	34 ND	ND ND	SS = 50 SS = 3	NE	No	2024 2022	Various sources.
pH Silver	ug/l	7.6	8.8	7.0	SS = 6.5 - 8.5	NE	No	2024	Naturally occurring and affected by chemical treatment.
Zinc	uq/L	ND	ND	ND	SS = 5000	NE	No	2024	Erosion of naturally occurring deposits.
UNREGULATED PARAMETERS - monitori Alkalinity, Bicarbonate	ing not required	143.7	225	40.5	LIR	NE	No	2024	Naturally occurring
Alkalinity, Carbonate	mg/L	ND	ND	-10.5 ND	UR	NE	No	2024	Naturally occurring.
Alkalinity, Hydroxide	mg/L mg/l	ND 110.1	ND 225	ND 14	UR UR	NE NF	No	2024	Naturally occurring. Naturally occurring.
Ammonia	mg/L	0.3	0.3	0.3	UR	NE	No	2018	Runoff from fertilizer and naturally occurring.
Bromide	ug/L	8	10.6	ND 31	UR	NE	No	2024	Naturally occurring.
Calcium	mg/L	46.5	86.6	22.5	UR	NE	No	2024	Erosion of naturally occurring deposits.
Chemical Oxygen Demand Chloropicrin	mg/L ug/L	ND ND	ND ND	ND ND	UR	NE NE	No	2014 2014	Measures amount of organic compounds in water. Naturally occurring. Antimicrobial, fundicide chemical compound.
Cobalt	mg/L	ND	ND	ND	UR	NE	No	2022	Erosion of naturally occurring deposits.
Conductance Cyanide, Total	umhos/cm ug/L	472.6 0.4	1100 4	56 ND	UR UR	NE NE	No No	2024 2024	Naturally occurring. Discharge from steel/metal factories; discharge from plastic and fertilizer factories.
Dioxin	pg/L	ND	ND	ND	UR	NE	No	2009	Industrial discharge from factories.
Hardness, Calcium	mg/L	1.9	183.3	ND 12	UR	NE	No	2024 2024	Erosion of naturally occurring deposits.
Hardness, Total	mg/L	190.9	381 ND	6 ND	UR	NE	No	2024	Erosion of naturally occurring deposits.
Magnesium	mg/L	17.0	41.3	ND	UR	NE	No	2011	Erosion of naturally occurring deposits.
Molybdenum Oil & Grease	ug/L mg/l	0.3	2.9	ND ND	UR	NE	No	2024	By-product of copper and tungsten mining. Petroleum bydrocarbone can either occur from natural underground deposite or from man made lubricante
Orthophosphates	ug/L	10.2	90	ND	UR	NE	No	2010	Erosion of naturally occurring deposits.
Potassium Silica (Silicon Dioxide)	mg/L mg/l	2.3 ND	10.9 ND	ND ND	UR UR	NE NF	No	2024	Erosion of naturally occurring deposits. Erosion of naturally occurring deposits.
TSS (Total Suspended Solids)	mg/L	0.02	0.2	ND	UR	NE	No	2024	Erosion of naturally occurring deposits.
Turbidity (distribution system) Vanadium	NTU ua/L	0.2 ND	0.8 ND	ND ND	UR	NE NE	No No	2024 2024	Suspended material from soil runoff. Naturally occurring.
VOCs		0.00	00.4	ND	LID	NE	N.	0004	Provident of debuller control distribution
Dibromochloromethane	ug/L ug/L	0.79	5.13	ND	UR	NE	No	2024	By-product of drinking water disinfection.
Bromodichloromethane	ug/L	1.98	7.1	ND ND	UR	NE	No	2024	By-product of drinking water disinfection.
All Other Parameters	ug/L	1.16	31.27	ND	Various	Various	No	2024	Various sources.
PESTICIDES/PCBs/SOCs Bis (2ethylbexyl) phthalate	ug/L	0.057	1.3	ND	6.0	0.0	No	2024	Discharge from rubber and chemical factories.
All Other Parameters	ug/L		All ND		Various	Various	No	2024	Various sources.
RADIOLOGICAL Radium 226	pCi/L	0.3	1.3	ND	NE	NE	No	2023	Decay of natural and man-made deposits.
Radium 228	pCi/L	0.3	1.3	-0.3	NE 15.0	NE	No	2024	Decay of natural and man-made deposits.
Gross-Beta	pCi/L	4	11	0.9	50.0	NE	No	2024	Decay of natural and man-made deposits.
Uranium	ug/L nCi/l	3.7 ND	7.5 ND	0.004 ND	30.0 NE	NE	No	2023	Decay of natural and man-made deposits. Naturally occurring in soil
DISINFECTANTS / DISINFECTION BY-PRO	DUCTS	110					110	2020	
TTHMs	mg/L ug/L	0.8 23.2	1.2 66.3	0.05 ND	4.0	NE NE	N0 N0	2024 2024	Urinking water disinfectant. By-product of drinking water disinfection.
HAA5s	uq/L	17	57.1	ND	60.0	NE	No	2024	High result is not a violation, violation is determined on annual location average. By-product of drinking water disinfection.
HAA6 Highest Annual Location Wide Avg.	ug/L ug/L	53	70.9	32.3 TTHM = 50	0.9 ug/L, HAA	NE 15s = 33.8 ι	INO Ig/L	2023	By-product of drinking water disinfection.
Bromate	ug/L	ND 12	ND 470	ND	10.0	NE	No	2024	By-product of drinking water disinfection.
Chlorite	mg/L	0.36	0.7	0.15	1.00	0.80	No	2024	By-product of drinking water disinfection.
ORGANIC MATERIAL	ma/l	1.8	37	ND	TT	NE	No	2024	Naturally occurring
Dissolved Organic Carbon	mg/L	2.1	2.4	1.8	TT	NE	No	2024	Naturally occurring.
UV-254 PROTOZOA (sampled at source water)	1/cm	0.03	0.05	0.01	UR	NE	No	2024	This is a measure of the concentration of UV-absorbing organic compounds. Naturally occurring.
Cryptosporidium	Oocysts/1L	ND	ND	ND	TT	0.00	No	2017	Parasite that enters lakes and rivers through sewage and animal waste.
Giardia MICROBIOLOGICAL	Cysts/1L	1.5	7.0	ND	TT	0.00	No	2017	Parasite that enters lakes and rivers through sewage and animal waste.
Total Coliform %	6 Positive per	0.00%	0.00%	0.00%	Not >5%	0.00	No	2024	MCL is for monthly compliance. All repeat samples were negative; no violations were issued. Human and animal fecal waste,
HPC milligrams per liter ug/L: milligrams per liter pg/L: bicograms per liter ng/L: nanograms per liter NTU: Nephelometric Turbidity Unit CU: Color Unit TON: Threshold Odor Unit umhos/cm: micro ohns per centimeter 1/cm: One / centimeter pG/L: picograms per liter MFL: Millions of Fibers per Liter MPN/mL: most probable number per milliliter Oorstaf /L: Ooorsts per 1 liter	MPN/mL	0.7 MCL: Maxi MCLG: Ma TTHM: Tot HAA5s: Fin HPC: Hete VOCs: Vol PCBs: Pol SOCs: Syr	2.0 imum Contai aximum Cont tal Trihalome ve Haloaceti rotrophic Pla latile Organia vchlorinated nthetic Organ	ND minant Levi taminant Levi t	500.0 el evel Goal ds als	0.0	No ND: None NA: Not A NE: Not E: UR: Unreq TT: Treatm AL: Action SS: Secon	2024 Detected ,pplicable stablished ulated nent Technique Level dary Standard	Used to measure the overall bacteriological guality of drinking water

JORDAN VALLEY WATER CONSERVANCY DISTRICT Consumer Confidence Report Data - UCMR 5 2024

Report: UCMR Appendix

The table below lists all of the parameters in the drinking water detected by Jordan Valley Water Conservancy District or its suppliers in the drinking water during the calendar year of this report for the Unregulated Contaminant Monitoring Rule. The presence of these parameters in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of this report. For certain parameters, EPA and/or the State requires monitoring at a frequency less than once per year because the concentrations do not change frequently.

Intersulting MCL MCL MCL Violation Sampled Inthum, Total ugL 13.4 92 ND UR NE No 2024 enfluorobanica acid (PERA) ugL ND ND ND NR NE No 2024 perfluorobanica acid (PERA) ugL ND ND ND NR NE No 2024 perfluorobanica acid (PERA) ugL ND ND ND ND ND 2024 perfluorobanesuffonic acid (PERA) ugL ND ND ND ND ND 2024 perfluorobanesuffonic acid (PERA) ugL ND ND ND ND ND 2024 2024 perfluorobanesuffonic acid (PERA) ugL ND ND ND ND ND 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024	Parameter	Units	Average	Maximum	Minimum	Moni	toring Criter	ia	Last	Comments/Likely Source
Unregulated Parameters Unregulated Parameters Linkin, Total Uq/L 13.2 /4 92 ND UR NE No 2024 Definition and (PFBA) ug/L ND ND ND ND VIR NE No 2024 Optimized and (PFBA) ug/L ND ND ND UR NE No 2024 Optimized and (PFBA) ug/L ND ND ND UR NE No 2024 Optimized and (PFEA) ug/L ND ND ND UR NE No 2024 Optimized and (PFEA) ug/L ND ND ND UR NE No 2024 Optimized and (PFEA) ug/L ND ND ND ND ND ND ND VIC Ne No 2024 Methy dott <tttttttttttttttttttttttttttttttttt< th=""><th></th><th></th><th>MCL</th><th>MCLG</th><th>Violation</th><th>Sampled</th></tttttttttttttttttttttttttttttttttt<>						MCL	MCLG	Violation	Sampled	
Lihum, Total ug/L 13.24 92 ND UR NE No 2024 enfluroto-anendroxyprogenacia acid (PFBA) ug/L ND ND <td>Unregulated Parameters</td> <td></td>	Unregulated Parameters									
verture/survey/repande acid (PFPA) ug1 ND ND ND UR NE No 2024 perfluoro-sendicular, acid (PFPA) ug1 ND ND ND ND VR NE No 2024 perfluoro-s-methoxytutanoic acid (PFPA) ug1 ND ND ND ND VR NE No 2024 perfluoro-s-methoxytutanoic acid (PFPA) ug1 ND ND ND ND ND VR NE No 2024 perfluoro-staneoscia acid (PFPA) ug1 ND ND ND ND ND VR NE No 2024 perfluoro-staneoscia acid (PFPA) ug1 ND ND ND ND ND ND ND ND 2024 perfluorobtaneoscia acid (PFPA) ug1 ND ND ND ND ND ND ND ND 2024 ND ND ND ND ND ND ND 2024 ND ND	Lithium, Total	ug/L	13.24	92	ND	UR	NE	No	2024	
Derfluctors-amethoxyproganol: acid (PFMA) ugL ND ND ND UR NE No 2024 enfluctorypental acid (PFBA) ugL ND ND ND ND UR NE No 2024 enfluctory-entrovytanaloc acid (PFBA) ugL ND ND ND UR NE No 2024 enfluctor2-entrovytanes (RPMA) ugL ND ND ND ND ND ND ND ND ND PID ND PID ND ND <td>perfluorobutanoic acid (PFBA)</td> <td>ug/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>UR</td> <td>NE</td> <td>No</td> <td>2024</td> <td></td>	perfluorobutanoic acid (PFBA)	ug/L	ND	ND	ND	UR	NE	No	2024	
perfluoropartancia cadi (PFPA) ug/L ND ND ND ND NE No 2024 perfluorod-amethoxybutanoic add (PFBS) ug/L ND	perfluoro-3-methoxypropanoic acid (PFMPA)	ug/L	ND	ND	ND	UR	NE	No	2024	
perflurochutanesulfonic acid (PFBS) ugd ND ND ND UR NE No 2024 perfluroch-methatoxytuanica icad (PFMBA) ugd ND ND ND UR NE No 2024 perfluroch-methatoxytuanica icad (PFMBA) ugd ND ND ND UR NE No 2024 V2FTS ugd ND ND ND UR NE No 2024 V2FTS ugd ND ND ND UR NE No 2024 v2FTS ugd ND ND ND UR NE No 2024 v2FTS ugd ND ND ND UR NE No 2024 v2ftuorohenatoria ugd ND ND ND UR NE No 2024 v2ftuorohenatoria ugd ND ND ND ND VR No 2024 v2ftuorohenatoria acid (PFNA) ugd <td>perfluoropentanoic acid (PFPeA)</td> <td>ug/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>UR</td> <td>NE</td> <td>No</td> <td>2024</td> <td></td>	perfluoropentanoic acid (PFPeA)	ug/L	ND	ND	ND	UR	NE	No	2024	
Derfluordmethox/butanoic acid (PFMBA) ug/L ND ND ND UR NE No 2024 contaluoro-3.6-dioxahegtanoic acid (PFMA) ug/L ND ND ND UR NE No 2024 v111, 112, 12, 12-Perfluoroheane sullonic acid ug/L ND ND ND UR NE No 2024 vatarros acid (PFHA) ug/L ND ND ND ND 2024 perfluoroheanals ug/L ND ND ND UR NE No 2024 vatarros ug/L ND ND ND UR NE No 2024 vatarros ug/L ND ND ND UR NE No 2024 sediuards-benduce ug/L ND ND ND UR NE No 2024 vatarros ug/L ND ND ND UR NE No 2024 vatarros ug/L <td>perfluorobutanesulfonic acid (PFBS)</td> <td>ug/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>UR</td> <td>NE</td> <td>No</td> <td>2024</td> <td></td>	perfluorobutanesulfonic acid (PFBS)	ug/L	ND	ND	ND	UR	NE	No	2024	
Derefluero(2-ethoxeethanelsulfonic acid (PFEESA) ug/L ND ND ND ND ND NR No 2024 NP1, H1, H2, H2, H2-perfluorohexane sulfonic acid ug/L ND ND ND ND ND VIR NE No 2024 Derdfluorohexane sulfonic acid (PFE) ug/L ND ND ND ND ND 2024 Derdfluorohexane sulfonic acid (PFE) ug/L ND ND ND ND ND 2024 Derdfluorohexane sulfonic acid (PFE) ug/L ND ND ND ND ND 2024 Sedfluorohexane sulfonic acid (PFE) ug/L ND ND ND ND 2024 Sedfluorohexane sulfonic acid (PFE) ug/L ND ND ND ND ND 2024 Sedfluorohexane sulfonic acid (PFHsS) ug/L ND ND ND ND 2024 Sedfluorohexane sulfonic acid (PFA) ug/L ND ND ND ND 2024 Sedflu	perfluoro-4-methoxybutanoic acid (PFMBA)	uq/L	ND	ND	ND	UR	NE	No	2024	
nonaturo-3.6-dioxaheptanoic acid (NPUA) ug/L ND ND ND ND VR NE No 2024 4:2FTS) ug/L ND ND ND ND VR NE No 2024 erfluorohexanols acid (PFHA) ug/L ND ND ND ND ND VR NE No 2024 restructorexanols acid (PFHA) ug/L ND ND ND ND ND 2024 refluorohesanesulfonic acid (PFHA) ug/L ND ND ND ND ND 2024 seffuorohesanesulfonic acid (PFHAS) ug/L ND ND ND ND ND 2024 refluorohesanesulfonic acid (PFHAS) ug/L ND ND ND ND 2024 refluorohesanesulfonic acid (PFHAS) ug/L ND ND ND ND 2024 refluorohesanesulfonic acid (PFA) ug/L ND ND ND ND 2024 refluorocetanesulfonic acid (PFOA)	perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	uq/L	ND	ND	ND	UR	NE	No	2024	
H1,H2,H2,H2,H2,H2,H2,H2,H2,H2,H2,H2,H2,H2,	nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ug/L	ND	ND	ND	UR	NE	No	2024	
Dertlucrohexanoic acid (PFHxA)ug/LNDNDNDVRNENo2024nexalluoroprovlene oxide dimer acid (HFPO DA)ug/LNDNDNDNDVRNENo2024nexalluoroprovlene oxide dimer acid (HFPAA)ug/LNDNDNDVRNENo2024perfluorohexanoic acid (PFHxS)ug/LNDNDNDVRNENo202414, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	1H,1H, 2H, 2H-perfluorohexane sulfonic acid (4:2FTS)	ug/L	ND	ND	ND	UR	NE	No	2024	
Derfluoropentanesulfonic acid (PFP6) ug/L ND ND ND VIR NE No 2024 nexatluoropropolane oxide dimer acid (PFPA) ug/L ND ND ND ND ND 2024 nexatluoropropolanoic acid (PFHA) ug/L ND ND ND ND ND 2024 nerfluorohexanesulfonic acid (PFHA) ug/L ND ND ND ND ND 2024 seffuorohexanesulfonic acid (PFHA) ug/L ND ND ND ND ND 2024 seffuorohexanesulfonic acid (PFHA) ug/L ND ND ND ND ND 2024 seffuorohexanesulfonic acid (PFHA) ug/L ND ND ND ND 2024 seffuorohexanesulfonic acid (PFHA) ug/L ND ND ND ND 2024 seffuorohexanesulfonic acid (PFHA) ug/L ND ND ND ND 2024 seffuorohexanesulfonic acid (PFHA) ug/L ND ND ND ND 2024 seffuorohexanesulfonic acid (PFA) ug/L ND ND ND ND 2024 seffuorohexanesulfonic acid (PFA) ug/L ND ND ND	perfluorohexanoic acid (PFHxA)	uq/L	ND	ND	ND	UR	NE	No	2024	
nexatlurorproviene oxide dimer acid (HFPO_DA)ua/LNDNDNDNDURNENO2024perfluoroheptanoic acid (PFHAS)ua/LNDNDNDNDURNENO202448-dioxa-3H-perfluoronanoic acid (ADONA)ug/LNDNDNDURNENO202448-dioxa-3H-perfluoronanoic acid (ADONA)ug/LNDNDNDURNENO20246:2FTS)ug/LNDNDNDURNENO2024perfluoroteanes ulfonic acid (PFHpS)ug/LNDNDNDURNENO2024perfluoronanoic acid (PFAA)ug/LNDNDNDURNENO2024perfluoronanoic acid (PFAA)ug/LNDNDNDURNENO2024perfluoronanoic acid (PFOA)ug/LNDNDNDURNENO2024perfluoronanoic acid (PFOA)ug/LNDNDNDURNENO2024perfluoronanoic acid (PFOA)ug/LNDNDNDURNENO2024perfluoronanoic acid (PFOA)ug/LNDNDNDURNENO2024perfluoronanoic acid (PFOA)ug/LNDNDNDURNENO2024perfluoronanoic acid (PFOA)ug/LNDNDNDURNENO2024perfluoronanoic acid (PFOA)ug/LND </td <td>perfluoropentanesulfonic acid (PFPeS)</td> <td>ug/L</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>UR</td> <td>NE</td> <td>No</td> <td>2024</td> <td></td>	perfluoropentanesulfonic acid (PFPeS)	ug/L	ND	ND	ND	UR	NE	No	2024	
perfluoroheptanoic acid (PFHAS)ua/LNDNDNDNDNDNDND2024The Unregulated Contaminant Monitoring Rule (UCMR) is a perfluorohexanesulfonic acid (ADONA)ug/LNDNDNDURNENo2024The Unregulated Contaminant Monitoring Rule (UCMR) is a perfluorohexanesulfonic acid (ADONA)ug/LNDNDNDURNENo2024The Unregulated Contaminant Monitoring Rule (UCMR) is a perfluorohexanesulfonic acid (PFHS)ug/LNDNDNDURNENo2024To different parameters selected by EPA. This rule collects occurrate data on parameters that laready occurrate data on parameters that already already occurrate data on parameters that already already occurrate data on parameters that already occurrate data	hexafluoropropylene oxide dimer acid (HFPO DA)	uq/L	ND	ND	ND	UR	NE	No	2024	
perfluorohexanesulfonic acid (PFLKS)ug/LNDNDNDURNENo2024monitoring program mater base PAL irequires public4,8-dioxa-3H-perfluorooctane sulfonic acidug/LNDNDNDURNENo2024water systems of corrunated by EPA. This rule collects6:2FTS)ug/LNDNDNDNDURNENo2024vater systems of corrunated by EPA. This rule collects6:2FTS)ug/LNDNDNDNDURNENo2024vater systems of corrunates that FAPA is considering forperfluorooctanoic acid (PEDA)ug/LNDNDNDURNENo2024have an MCL but they would like to know the occurance of itarefluorootanoic acid (PFOA)ug/LNDNDNDURNENo2024have an MCL but they would like to know the occurance of itarefluorootanesulfonic acid (PFOA)ug/LNDNDNDURNENo2024at significantly lower levels than the current analytical method9c1/Lorootanesulfonic acid (PFDA)ug/LNDNDNDURNENo2024at significantly lower levels than the current analytical methodsetfluorootanesulfonic acid (PFDA)ug/LNDNDNDURNENo2024at significantly lower levels than the current analytical methodsetfluorootanesulfonic acid (PFDA)ug/LNDNDNDURNENo2024at significantly lower level	perfluoroheptanoic acid (PFHpA)	uq/L	ND	ND	ND	UR	NE	No	2024	The Unregulated Contaminant Monitoring Rule (UCMR) is a
4.8-dox-3H-perfluorononanoic acid (ADONA) ug/L ND ND ND UR NE No 2024 water systems to monitor various sites every three (3) years for different parameters sales every three (3) years for different parameters that EPA is considering for different parameters that EPA is considering for different parameters that EPA is considering for explusion. Sometimes EPA includes parameters that already have an MCL but they would like to know the occurrance of it at significantly lower levels than the current analytical method perfluoroctane sulfonic acid (PEDA) ug/L ND ND UR NE No 2024 alignificantly lower levels than the current analytical method perfluorodecane sulfonic acid (PEDA) ug/L ND ND UR NE No 2024 alignificantly lower levels than t	perfluorohexanesulfonic acid (PFHxS)	uq/L	ND	ND	ND	UR	NE	No	2024	monitoring program mandated by EPA. It requires public
IH, H, 2H, 2H, Perfluorooctane sulfonic acidug/LNDNDNDURNENo20246:2FTS)ug/LNDNDNDNDURNENo2024perfluorooctanoic acid (PFDA)ug/LNDNDNDURNENo2024perfluorononanoic acid (PFNA)ug/LNDNDNDURNENo2024perfluorootanoic acid (PFOA)ug/LNDNDNDURNENo2024perfluorononanoic acid (PFNA)ug/LNDNDNDURNENo2024perfluorootanesulfonic acid (PFOA)ug/LNDNDNDURNENo2024perfluorootanoic acid (PFNA)ug/LNDNDNDURNENo2024perfluorootanoic acid (PFOA)ug/LNDNDNDURNENo2024perfluorodecanoic acid (PFDA)ug/LNDNDNDURNENo202411, 14, 2H, 2H-perfluorodecane sulfonic acidug/LNDNDURNENo202412, 2FTS)ug/LNDNDNDURNENo202414, 14, 2H, 2H-perfluorodecane sulfonic acid (PFDA)ug/LNDNDURNENo202411-chloreicosafluoro-3-oxaundecane-1-sulfonicug/LNDNDURNENo202411-chloreicosafluoro-3-oxaundecaneic acid (PFDA)ug/LND<	4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ug/L	ND	ND	ND	UR	NE	No	2024	water systems to monitor various sites every three (3) years for different parameters selected by EPA. This rule collects occurance data on parameters that EPA is considering for
berfluoroheptanesulfonic acid (PFHpS)uq/LNDNDNDURNENo2024berfluorooctanoic acid (PFOA)uq/LNDNDNDURNENo2024have an Activation Sometimes EPA includes parameters that already tave an Activation Sometimes EPA includes parameters that already have an Activation Sometimes EPA includes parameters that already 	1H,1H, 2H, 2H-perfluorooctane sulfonic acid (6:2FTS)	ug/L	ND	ND	ND	UR	NE	No	2024	
Deerfluorooctanoic acid (PFOA) ug/L ND ND ND UR NE No 2024 have an MCL but they would like to know the occurance of it at significantly lower an MCL but they would like to know the occurance of it at significantly lower and they share the current analytical method Derfluorooctanesulfonic acid (PFOS) ug/L ND ND ND NE No 2024 P-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid ug/L ND ND ND UR NE No 2024 P-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid ug/L ND ND ND UR NE No 2024 Perfluorodecanoic acid (PFDA) ug/L ND ND ND UR NE No 2024 Perfluorodecanoic acid (PFDA) ug/L ND ND UR NE No 2024 Perfluorodecanoic acid (PFDA) ug/L ND ND ND UR NE No 2024 Pierfluorodecanoic acid (PFDA) ug/L ND ND UR NE No 2024 Pierfluorodecanoic acid (PFDA) ug/L ND ND	perfluoroheptanesulfonic acid (PFHpS)	ua/L	ND	ND	ND	UR	NE	No	2024	regulation. Sometimes EPA includes parameters that already
perfluoronanoic acid (PFNA)ug/LNDNDNDURNENo2024at significantly lower levels than the current analytical method allows. These numbers represent samples taken during the operfluorodecanoic acid (PFOS)ug/LNDNDNDURNENo2024at significantly lower levels than the current analytical method allows. These numbers represent samples taken during the 	perfluorooctanoic acid (PFOA)	ua/L	ND	ND	ND	UR	NE	No	2024	have an MCL but they would like to know the occurance of it
Deperfuorooctanesulfonic acid (PFOS) ug/L ND ND ND UR NE No 2024 allows. These numbers represent samples taken during the monitoring period which began in 2023 and will conclude in 2023 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid ug/L ND ND ND UR NE No 2024 allows. These numbers represent samples taken during the monitoring period which began in 2023 and will conclude in 2025. perfluorodecanoic acid (PFDA) ug/L ND ND ND UR NE No 2024 1H;1H; 2H; 2H-perfluorodecane sulfonic acid ug/L ND ND ND UR NE No 2024 8:2FTS) ug/L ND ND ND UR NE No 2024 11-chloreoicosafluoro-3-oxaundecane-1-sulfonic acid ug/L ND ND ND UR NE No 2024 -enfluorodecanoic acid (PFDA) ug/L ND ND ND UR NE No 2024 -enfluorodecanoic acid (PFDA) ug/L ND ND ND UR NE No 2024 NMeF	perfluorononanoic acid (PFNA)	ua/L	ND	ND	ND	UR	NE	No	2024	at significantly lower levels than the current analytical method
De-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid ug/L ND ND ND UR NE No 2024 IgCL-PF3ONS) ug/L ND ND ND UR NE No 2024 IgCL-PF3ONS) ug/L ND ND ND UR NE No 2024 Derfluorodecanoic acid (PFDA) ug/L ND ND ND UR NE No 2024 11,1H, 2H, 2H-perfluorodecane sulfonic acid ug/L ND ND ND UR NE No 2024 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic ug/L ND ND ND UR NE No 2024 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic ug/L ND ND ND UR NE No 2024 0erfluorodcanosi acid (PFDA) ug/L ND ND ND UR NE No 2024 0erfluorodcanosi acid (PFDA) ug/L ND ND ND UR NE No 2024 0erfluorodcanosi acid (PFDA) ug/L ND ND ND UR NE No 2024 Netfluorodcanesulfonamidoacetic acid ug/L ND ND	perfluorooctanesulfonic acid (PFOS)	ua/L	ND	ND	ND	UR	NE	No	2024	allows. These numbers represent samples taken during the
Deerfluorodecanoic acid (PFDA)ug/LNDNDNDURNENo20241H,1H, 2H, 2H-perfluorodecane sulfonic acidug/LNDNDNDURNENo202482:FTS)ug/LNDNDNDURNENo2024berfluorodecane i acid (PFUnA)ug/LNDNDNDURNENo202411-chloreoicosafluoro-3-oxaundecane-1-sulfonicug/LNDNDNDURNENo2024acid (11C)-PF3OUdS)ug/LNDNDNDURNENo2024perfluorodecanoic acid (PFDA)ug/LNDNDNDURNENo2024-methyl perfluorooctanesulfonamidoacetic acidug/LNDNDNDURNENo2024Nethyl perfluorooctanesulfonamidoacetic acidug/LNDNDNDURNENo2024Nethyl perfluorooctanesulfonamidoacetic acidug/LNDNDNDURNENo2024Nethyl perfluorooctanesulfonamidoacetic acidug/LNDNDNDURNENo2024Nethyl perfluorooctanesulfonamidoacetic acidug/LNDNDNDURNENo2024Nethyl perfluorooctanesulfonamidoacetic acidug/LNDNDNDURNENo2024Nethure-teradecanoic acid (PFTrDA)ug/LNDNDNDURNENo2024	9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ug/L	ND	ND	ND	UR	NE	No	2024	monitoring period which began in 2023 and will conclude in 2025.
IH, H, 2H, 2H-perfluorodecane sulfonic acidug/LNDNDNDURNENo20248:2FTS)perfluorondecanoic acid (PFUnA)ug/LNDNDNDURNENo202411-chloroeicosafluoro-3-oxaundecane-1-sulfonicug/LNDNDNDURNENo202411-chloroeicosafluoro-3-oxaundecane-1-sulfonicug/LNDNDNDURNENo2024perfluoroddecanoic acid (PFDoA)ug/LNDNDNDURNENo2024-methyl perfluorooctanesulfonamidoacetic acidug/LNDNDNDURNENo2024Nethyl perfluorooctanesulfonamidoacetic acidug/LNDNDNDURNENo2024Nethyl perfluorooctanesulfonamidoacetic acidug/LNDNDNDURNENo2024Nethyl perfluorooctanesulfonamidoacetic acidug/LNDNDNDURNENo2024enfluorotridecanoic acid (PFTrDA)ug/LNDNDNDURNENo2024perfluorotridecanoic acid (PFTrA)ug/LNDNDNDURNENo2024	perfluorodecanoic acid (PFDA)	ua/L	ND	ND	ND	UR	NE	No	2024	
Deerfluoroundecanoic acid (PFUnA)ug/LNDNDNDURNENo202411-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11C-FPSOUdS)ug/LNDNDNDURNENo2024Deerfluorododecanoic acid (PFDoA)ug/LNDNDNDURNENo2024-methyl perfluorooctanesulfonamidoacetic acid (NMEFOSAA)ug/LNDNDNDURNENo2024-Nethyl perfluorooctanesulfonamidoacetic acid (NEFOSAA)ug/LNDNDNDURNENo2024-enthyl perfluorooctanesulfonamidoacetic acid 	1H,1H, 2H, 2H-perfluorodecane sulfonic acid (8:2FTS)	ug/L	ND	ND	ND	UR	NE	No	2024	
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic ug/L ND ND ND UR NE No 2024 acid (11CI-PF3OUGS) ug/L ND ND ND UR NE No 2024 p-methyl perfluoroctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 n-methyl perfluoroctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 Nethyl perfluoroctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 Nethyl perfluoroctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 Nethyl perfluoroctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 Veth/U perfluoroctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 vetfluorottidecanoic acid (PFTrDA) ug/L ND ND ND UR NE No 2024	perfluoroundecanoic acid (PFUnA)	ua/L	ND	ND	ND	UR	NE	No	2024	
perfluorododecanoic acid (PFDoA) ug/L ND ND ND UR NE No 2024 n-methyl perfluorooctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 NMeFOSAA) v-ethyl perfluorooctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 v-ethyl perfluorooctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 v-ethyl perfluorooctanesulfonamidoacetic acid ug/L ND ND UR NE No 2024 verthyl perfluorooctanesulfonamidoacetic acid ug/L ND ND UR NE No 2024 verthyl perfluorooctanesulfonamidoacetic acid ug/L ND ND UR NE No 2024 verthuorotridecanoic acid (PFTrDA) ug/L ND ND UR NE No 2024	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS)	ug/L	ND	ND	ND	UR	NE	No	2024	
n-methyl perfluorooctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 (NMeFOSAA) N-ethyl perfluorooctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 (NEtFOSAA) perfluorotridecanoic acid (PFTrDA) ug/L ND ND ND UR NE No 2024 perfluorotridecanoic acid (PFTA) ug/L ND ND ND UR NE No 2024	perfluorododecanoic acid (PFDoA)	ua/L	ND	ND	ND	UR	NE	No	2024	
N-ethyl perfluorooctanesulfonamidoacetic acid ug/L ND ND ND UR NE No 2024 NEtFOSAA) ug/L ND ND ND UR NE No 2024 perfluorotridecanoic acid (PFTrDA) ug/L ND ND UR NE No 2024 perfluorotridecanoic acid (PFTA) ug/L ND ND UR NE No 2024	n-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/L	ND	ND	ND	UR	NE	No	2024	
perfluorotridecanoic acid (PFTDA) ug/L ND ND VR NE No 2024 perfluorotetradecanoic acid (PFTA) ug/L ND ND VR NE No 2024	N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ug/L	ND	ND	ND	UR	NE	No	2024	
perfluorotetradecanoic acid (PFTA) Ug/L ND ND ND UR NE No 2024	perfluorotridecanoic acid (PFTrDA)	ug/L	ND	ND	ND	UR	NE	No	2024	
	perfluorotetradecanoic acid (PFTA)	ug/L	ND	ND	ND	UR	NE	No	2024	

mg/L: milligrams per liter ug/L: micrograms per liter ng/L: nanograms per liter MCL: Maximum Contaminant Level MCLG: Maximum Contaminant Level Goal ND: None Detected NA: Not Applicable NE: Not Established UR: Unregulated